Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(3): 380-386, 2024 Mar 15.
Artigo em Chinês | MEDLINE | ID: mdl-38500435

RESUMO

Objective: To review the research progress of magnesium and magnesium alloy implants in the repair and reconstruction of sports injury. Methods: Relevant literature of magnesium and magnesium alloys for sports injury repair and reconstruction was extensively reviewed. The characteristics of magnesium and its alloys and their applications in the repair and reconstruction of sports injuries across various anatomical sites were thoroughly discussed and summarized. Results: Magnesium and magnesium alloys have advantages in mechanical properties, biosafety, and promoting tendon-bone interface healing. Many preclinical studies on magnesium and magnesium alloy implants for repairing and reconstructing sports injuries have yielded promising results. However, successful clinical translation still requires addressing issues related to mechanical strength and degradation behavior, where alloying and surface treatments offer feasible solutions. Conclusion: The clinical translation of magnesium and magnesium alloy implants for repairing and reconstructing sports injuries holds promise. Subsequent efforts should focus on optimizing the mechanical strength and degradation behavior of magnesium and magnesium alloy implants. Conducting larger-scale biocompatibility testing and developing novel magnesium-containing implants represent new directions for future research.


Assuntos
Traumatismos em Atletas , Medicina Esportiva , Humanos , Magnésio , Ligas , Próteses e Implantes , Teste de Materiais , Implantes Absorvíveis , Corrosão
2.
Adv Healthc Mater ; 13(9): e2303255, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253413

RESUMO

Partial-thickness cartilage defect (PTCD) is a common and formidable clinical challenge without effective therapeutic approaches. The inherent anti-adhesive characteristics of the extracellular matrix within cartilage pose a significant impediment to the integration of cells or biomaterials with the native cartilage during cartilage repair. Here, an injectable photocrosslinked bioadhesive hydrogel, consisting of gelatin methacryloyl (GM), acryloyl-6-aminocaproic acid-g-N-hydroxysuccinimide (AN), and poly(lactic-co-glycolic acid) microspheres loaded with kartogenin (KGN) (abbreviated as GM/AN/KGN hydrogel), is designed to enhance interfacial integration and repair of PTCD. After injected in situ at the irregular defect, a stable and robust hydrogel network is rapidly formed by ultraviolet irradiation, and it can be quickly and tightly adhered to native cartilage through amide bonds. The hydrogel exhibits good adhesion strength up to 27.25 ± 1.22 kPa by lap shear strength experiments. The GM/AN/KGN hydrogel demonstrates good adhesion, low swelling, resistance to fatigue, biocompatibility, and chondrogenesis properties in vitro. A rat model with PTCD exhibits restoration of a smoother surface, stable seamless integration, and abundant aggrecan and type II collagen production. The injectable stable adhesive hydrogel with long-term chondrogenic differentiation capacity shows great potential to facilitate repair of PTCD.


Assuntos
Anilidas , Condrogênese , Hidrogéis , Ácidos Ftálicos , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Preparações de Ação Retardada/farmacologia , Cartilagem
3.
Neural Regen Res ; 19(5): 1126-1133, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37862218

RESUMO

Traumatic spinal cord injury is potentially catastrophic and can lead to permanent disability or even death. China has the largest population of patients with traumatic spinal cord injury. Previous studies of traumatic spinal cord injury in China have mostly been regional in scope; national-level studies have been rare. To the best of our knowledge, no national-level study of treatment status and economic burden has been performed. This retrospective study aimed to examine the epidemiological and clinical features, treatment status, and economic burden of traumatic spinal cord injury in China at the national level. We included 13,465 traumatic spinal cord injury patients who were injured between January 2013 and December 2018 and treated in 30 hospitals in 11 provinces/municipalities representing all geographical divisions of China. Patient epidemiological and clinical features, treatment status, and total and daily costs were recorded. Trends in the percentage of traumatic spinal cord injuries among all hospitalized patients and among patients hospitalized in the orthopedic department and cost of care were assessed by annual percentage change using the Joinpoint Regression Program. The percentage of traumatic spinal cord injuries among all hospitalized patients and among patients hospitalized in the orthopedic department did not significantly change overall (annual percentage change, -0.5% and 2.1%, respectively). A total of 10,053 (74.7%) patients underwent surgery. Only 2.8% of patients who underwent surgery did so within 24 hours of injury. A total of 2005 (14.9%) patients were treated with high-dose (≥ 500 mg) methylprednisolone sodium succinate/methylprednisolone (MPSS/MP); 615 (4.6%) received it within 8 hours. The total cost for acute traumatic spinal cord injury decreased over the study period (-4.7%), while daily cost did not significantly change (1.0% increase). Our findings indicate that public health initiatives should aim at improving hospitals' ability to complete early surgery within 24 hours, which is associated with improved sensorimotor recovery, increasing the awareness rate of clinical guidelines related to high-dose MPSS/MP to reduce the use of the treatment with insufficient evidence.

4.
Adv Mater ; : e2308701, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971104

RESUMO

Developing hydrogels that can quickly reach deep bleeding sites, adhere to wounds, and expand to stop lethal and/or noncompressible bleeding in civil and battlefield environments remains a challenge. Herein, an injectable, antibacterial, self-expanding, and self-propelling hydrogel bioadhesive with procoagulant activity and rapid gelation is reported. This hydrogel combines spontaneous gas foaming and rapid Schiff base crosslinking for lethal massive hemorrhage. Hydrogels have rapid gelation and expansion rate, high self-expanding ratio, excellent antibacterial activity, antioxidant efficiency, and tissue adhesion capacity. In addition, hydrogels have good cytocompatibility, procoagulant ability, and higher blood cell/platelet adhesion activity than commercial combat gauze and gelatin sponge. The optimized hydrogel (OD-C/QGQL-A30) exhibits better hemostatic ability than combat gauze and gelatin sponge in rat liver and femoral artery bleeding models, rabbit volumetric liver loss massive bleeding models with/without anticoagulant, and rabbit liver and kidney incision bleeding models with bleeding site not visible. Especially, OD-C/QGQL-A30 rapidly stops the bleedings from pelvic area of rabbit, and swine subclavian artery vein transection. Furthermore, OD-C/QGQL-A30 has biodegradability and biocompatibility, and accelerates Methicillin-resistant S. aureus (MRSA)-infected skin wound healing. This injectable, antibacterial, self-expanding, and self-propelling hydrogel opens up a new avenue to develop hemostats for lethal massive bleeding, abdominal organ bleeding, and bleeding from coagulation lesions.

5.
ACS Nano ; 17(21): 22015-22034, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37862553

RESUMO

Developing injectable antiswelling and high-strength bioactive hydrogels with wet tissue adhesiveness and a rapid gelling process to meet the requirements for rapid hemostasis, sutureless wound closure, and scar-free repair of infected skin wounds continues to have ongoing challenges. Herein, injectable, antibacterial, and antioxidant hydrogel adhesives based on poly(citric acid-co-polyethylene glycol)-g-dopamine and amino-terminated Pluronic F127 (APF) micelles loaded with astragaloside IV (AS) are prepared. The H2O2/horseradish peroxidase (HRP) system is used to cause cross-linking of the hydrogel network through oxidative coupling between catechol groups and chemical cross-linking between the catechol group and the amino group. The hydrogels exhibit a rapid gelling process, high mechanical strength, an antiswelling effect, good antioxidant property, H2O2 release behavior, and degradability. In addition, the hydrogels present good wet tissue adhesiveness, high bursting pressure, excellent antibacterial activity, long-term sustained release of AS, and good biocompatibility. The hydrogels perform good hemostasis on mouse liver, rat liver, and rabbit femoral vein bleeding models and achieve much better closure and healing of skin incisions than biomedical glue and surgical sutures. Furthermore, the hydrogel dressing significantly improved the scar-free repair of MRSA-infected full thickness skin defect wounds by modulating inflammation, regulating the ratio of collagen I/III, and improving the vascularization and granulation tissue formation. Thus, AS-loaded hydrogels show huge potential as multifunctional dressings for in vivo hemostasis, sutureless wound closure, and scar-free repair of infected skin wounds.


Assuntos
Hidrogéis , Cicatrização , Animais , Camundongos , Coelhos , Ratos , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/química , Antioxidantes/farmacologia , Catecóis , Hidrogéis/farmacologia , Hidrogéis/química , Peróxido de Hidrogênio
6.
Front Cell Dev Biol ; 11: 1062229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36866277

RESUMO

Advanced glycation end-products (AGEs) can boost their receptor of AGE (RAGE) expression through the downstream signaling pathway to facilitate AGE-RAGE interaction. In this regulation process, the primary signaling pathways are NF-κB and STAT3. However, the inhibition of these transcription factors cannot completely block the upregulation of RAGE, which indicates AGEs may also impact RAGE expression via other pathways. In this study, we revealed that AGEs can exhibit epigenetic impacts on RAGE expression. Here, we used carboxymethyl-lysine (CML) and carboxyethyl-lysine (CEL) to treat liver cells and discovered that AGEs can promote the demethylation of the RAGE promoter region. To verify this epigenetic modification, we employed dCAS9-DNMT3a with sgRNA to specifically modify the RAGE promoter region against the effect of carboxymethyl-lysine and carboxyethyl-lysine. The elevated RAGE expressions were partially repressed after AGE-induced hypomethylation statuses were reversed. Additionally, TET1 were also upregulated in AGE-treated cells, indicating AGEs may epigenetically modulate RAGE through the elevating TET1 level.

8.
Front Med (Lausanne) ; 9: 1028575, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465935

RESUMO

Osteoarthritis (OA) is characterized by the degeneration of articular cartilage. Decreased autophagy is tightly associated with chondrocyte death, which contributes to the progression of OA. Thus, pharmacological activation of autophagy may be a promising therapeutic approach for OA. Here, we discovered that clioquinol, an antibiotic, significantly induces autophagy in OA chondrocytes from human tissue and rabbit model. Meanwhile, clioquinol can also augment the expression of extracellular matrix (ECM) components and suppress inflammatory mediators to improve OA microenvironment. Intra-articular injection of clioquinol can greatly prevent or slow down the development of this disease in a trauma-induced rabbit model of osteoarthritis. Such protective effect induced by clioquinol was at least in part explained by decreasing chondrocyte apoptosis and increasing autophagy. This study reveals the therapeutic potential of clioquinol in OA treatment.

9.
Acta Biomater ; 154: 275-289, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36328126

RESUMO

Substantial challenges remain in constructing the native tendon-to-bone interface for rotator cuff healing owing to the enthesis tissues' highly organized structural and compositional gradients. Herein, we propose to bioprint living tissue constructs with layer-specific growth factors (GFs) to promote enthesis regeneration by guiding the zonal differentiation of the loaded stem cells in situ. The sustained release of tenogenic, chondrogenic, and osteogenic GFs was achieved via microsphere-based delivery carriers embedded in the bioprinted constructs. Compared to the basal construct without GFs, the layer-specific tissue analogs realized region-specific differentiation of stem cells in vitro. More importantly, bioprinted living tissue constructs with layer-specific GFs rapidly enhanced the enthesis regeneration in a rabbit rotator cuff tear model in terms of biomechanical restoration, collagen deposition, and alignment, showing gradient interface of fibrocartilage structures with aligned collagen fibrils and an ultimate load failure of 154.3 ± 9.5 N resembling those of native enthesis tissues in 12 weeks. This exploration provides a feasible strategy to engineer living tissue constructions with region-specific differentiation potentials for the functional repair of gradient enthesis tissues. STATEMENT OF SIGNIFICANCE: Previous studies that employed acellular layer-specific scaffolds or stem cells for the reconstruction of the rotator cuff faced challenges due to their insufficient capability to rebuild the anisotropic compositional and structural gradients of native enthesis tissues. This manuscript proposed a living tissue construct with layer-specific, GFs-loaded µS, which can direct in situ and region-specific differentiation of the embedded stem cells to tenogenic, chondrogenic, and osteogenic lineages for functional regeneration of the enthesis tissues. This bioprinted living tissue construct with the unique capability to reduce fibrovascular scar tissue formation and simultaneously facilitate enthesis tissue remodeling might provide a promising strategy to repair complex and gradient tissues in the future.


Assuntos
Lesões do Manguito Rotador , Cicatrização , Animais , Coelhos , Cicatrização/fisiologia , Fenômenos Biomecânicos , Manguito Rotador/metabolismo , Lesões do Manguito Rotador/cirurgia , Colágeno/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular
10.
Biofabrication ; 14(3)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35235923

RESUMO

Preparing a micropatterned elastomer film with characteristics that can simulate the mechanical properties, anisotropy, and electroactivity of natural myocardial tissues is crucial in cardiac tissue engineering after myocardial infarction (MI). Therefore, in this study, we developed several elastomeric films with a surface micropattern based on poly (glycerol sebacate) (PGS) and graphene (Gr). These films have sufficient mechanical strength (0.6 ± 0.1-3.2 ± 0.08 MPa) to withstand heartbeats, and the micropatterned structure also satisfies the natural myocardium anisotropy in the transverse and vertical. Moreover, Gr makes these films conductive (up to 5.80 × 10-7S m-1), which is necessary for the conduction of electrical signals between cardiomyocytes and the cardiac tissue. Furthermore, they have good cytocompatibility and can promote cell proliferation in H9c2 rat cardiomyocyte cell lines.In vivotest results indicate that these films have good biocompatibility. Notably, a film with 1 wt% Gr content (PGS-Gr1) significantly affects the recovery of myocardial function in rats after MI. This film effectively decreased the infarct size and degree of myocardial fibrosis and reduced collagen deposition. Echocardiographic evaluation showed that after treatment with this film, the left ventricular internal dimension (LVID) in systole and LVID in diastole of rats exhibited a significant downward trend, whereas the fractional shortening and ejection fraction were significantly increased compared with the control group. These data indicate that this electroactive micropatterned anisotropic elastomer film can be applied in cardiac tissue engineering.


Assuntos
Grafite , Infarto do Miocárdio , Animais , Decanoatos/química , Elastômeros/química , Glicerol/química , Frequência Cardíaca , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Ratos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
11.
J Colloid Interface Sci ; 608(Pt 3): 2278-2289, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34774324

RESUMO

Burn wounds are susceptible to bacterial infections and are usually accompanied by a large amount of exudate, making the treatment of burn wounds a challenge in the clinic. Here, we developed a biodegradable cryogel with high water absorption and good antibacterial and antibiofilm activity based on gelatin (GT) and silver nanoparticles (Ag NPs) to promote burn wound healing. The porous GT/Ag cryogel had a swelling ratio of up to 4000%, effectively absorbing wound exudate and allowing for gas exchange. Moreover, the GT/Ag cryogel had an excellent killing effect on methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PA), which burn wounds are susceptible to, and can effectively remove mature biofilms. In the rat liver defect noncompressible hemorrhage model, GT/Ag cryogels with shape memory performance showed better hemostatic ability than commercial gelatin sponges. Most importantly, the GT/Ag cryogel was more effective than the TegadermTM dressing and GT cryogel in promoting wound contraction, collagen deposition, and angiogenesis and reducing inflammation in a PA-infected burn wound model. In addition, GT/Ag cryogels degraded in the body within 4 weeks, which alleviated the pain of peeling the dressing from the wound. Therefore, GT/Ag cryogels with outstanding antibacterial properties and effective absorption of wound exudates are excellent candidates for wound dressings to promote burn wound repair.


Assuntos
Queimaduras , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Biofilmes , Queimaduras/tratamento farmacológico , Criogéis/farmacologia , Gelatina/farmacologia , Hemostasia , Pseudomonas aeruginosa , Ratos , Prata/farmacologia , Cicatrização
12.
J Biomed Nanotechnol ; 17(5): 859-872, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34082872

RESUMO

Osteoarthritis is one of the most prevalent chronic diseases. Cartilage inflammation in osteoarthritis results from pain in articular joints. Anti-inflammatory drugs provide relief by hindering the production of pro-inflammatory cytokines and interleukin-6. Targeted delivery of anti-inflammatory drugs is very effective in the treatment of osteoarthritis. This approach reduces the usage of therapeutic drug dosages and unwanted side effects. Here, we fabricated a non-invasive and efficient targeted drug delivery system to reduce persistent inflammation in an osteoarthritis model. Temperature-sensitive hollow dextran/poly(N-isopropyl acrylamide) nanoparticles were synthesized by the destruction of N,N'-bis(acryloyl)cystamine crosslinked cores in imidazolium-based ionic liquids. The copolymerized 2-acrylamido-2-methylpropane sulfonic acid created sulfur functionalities that increase the loading of therapeutic KAFAK peptides. The chemical structure of the polymer nanoparticles was analyzed with UV-Visible, Fourier transform infrared, and X-ray photoelectron spectroscopy. The thermal responsive characteristics of the nanoparticles were determined with dynamic light scattering, scanning electron microscopy, and transmission electron microscopy analyses. Moreover, the synthesized nanoparticles were used as drug carriers to reduce inflammation in an Ex Vivo osteoarthritis model. The KAFAK-loaded hollow dextran/PNIPAM nanoparticles effectively delivered therapeutic peptides in cartilage explants to suppress inflammation. These thermoresponsive nanoparticles could be an effective drug delivery system to deliver anti-inflammatory therapeutic peptides in a highly osteoarthritic environment.


Assuntos
Líquidos Iônicos , Nanopartículas , Osteoartrite , Portadores de Fármacos/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Líquidos Iônicos/uso terapêutico , Osteoartrite/tratamento farmacológico , Peptídeos
13.
Theranostics ; 11(12): 5911-5925, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897889

RESUMO

Poor healing response after rotator cuff reconstruction is multifactorial, with the inflammatory microenvironment and deficiency of stem cell differentiation factors at the lesion site being most relevant. However, there is a lack of effective tissue engineering strategies that can simultaneously exert anti-inflammatory and pro-differentiation effects to promote rotator cuff healing. Methods: In this study, we synthesized and characterized a novel active drug delivery vector that successfully overcame the challenge of simultaneous high-efficiency loading and controlled release of Mg2+ and curcumin. The anti-inflammatory and pro-differentiation effects of the composite hydrogel were evaluated in vitro and in vivo. Moreover, healing of the rotator cuff tendon-to-bone interface was studied by histology, immunofluorescence, and biomechanical tests. Results: The composite hydrogel exhibited excellent biocompatibility and injectability, good adhesiveness, and rapid self-healing. The released curcumin showed obvious anti-inflammatory and antioxidation effects, which protected stem cells and tendon matrix. Furthermore, released Mg2+ promoted stem cell aggregation and chondrogenesis. Moreover, biomechanical tests and histological results of a rat rotator cuff tear model at 8 weeks after surgery indicated that the composite hydrogel significantly enhanced tendon-to-bone healing. Conclusions: The composite hydrogel mediated sustained in situ release of curcumin and Mg2+ to effectively promote rotator cuff tendon-to-bone healing via anti-inflammatory and pro-differentiation effects. Therefore, this composite hydrogel offers significant promise for rotator cuff repair.


Assuntos
Anti-Inflamatórios/farmacologia , Osso e Ossos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Curcumina/farmacologia , Preparações de Ação Retardada/farmacologia , Hidrogéis/farmacologia , Magnésio/farmacologia , Tendões/efeitos dos fármacos , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Manguito Rotador/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
14.
Biomater Sci ; 8(15): 4287-4298, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32589696

RESUMO

Conductive polymers have been used for various biomedical applications including biosensors, tissue engineering and regenerative medicine. However, the poor processability and brittleness of these polymers hinder the fabrication of three-dimensional structures with desirable geometries. Moreover, their application in tissue engineering and regenerative medicine has been so far limited to excitable cells such as neurons and muscle cells. To enable their wider adoption in tissue engineering and regenerative medicine, new materials and formulations that overcome current limitations are required. Herein, a biodegradable conductive block copolymer, tetraaniline-b-polycaprolactone-b-tetraaniline (TPT), is synthesised and 3D printed for the first time into porous scaffolds with defined geometries. Inks are formulated by combining TPT with PCL in solutions which are then directly 3D printed to generate porous scaffolds. TPT and PCL are both biodegradable. The combination of TPT with PCL increases the flexibility of the hybrid material compared to pure TPT, which is critical for applications that need mechanical robustness of the scaffolds. The highest TPT content shows the lowest tensile failure strain. Moreover, the absorption of a cell adhesion-promoting protein (fibronectin) and chondrogenic differentiation of chondroprogenitor cells are found to be dependent on the amount of TPT in the blends. Higher content of TPT in the blends increases both fibronectin adsorption and chondrogenic differentiation, though the highest concentration of TPT in the blends is limited by its solubility in the ink. Despite the contradicting effects of TPT concentration on flexibility and chondrogenic differentiation, a concentration that strikes a balance between the two factors is still available. It is worth noting that the effect on chondrogenic differentiation is found in scaffolds without external electric stimulation. Our work demonstrates the possibility of 3D printing flexible conductive and biodegradable scaffolds and their potential use in cartilage tissue regeneration, and opens up future opportunities in using electric stimulation to control chondrogenesis in these scaffolds.


Assuntos
Condrogênese , Células-Tronco Mesenquimais , Diferenciação Celular , Proliferação de Células , Poliésteres , Polímeros , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
15.
Biomacromolecules ; 21(5): 1841-1852, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32388998

RESUMO

As the abuse of antibiotics continues to increase, the emergence of antibiotic resistance and unknown drug-resistant bacterial infections pose a great threat on people worldwide. In this work, we aimed to develop a series of injectable antimicrobial conductive hydrogels based on glycidyl methacrylate functionalized quaternized chitosan (QCSG), gelatin methacrylate (GM), and graphene oxide (GO) for drug-resistant bacterial disinfection and infectious wound healing. The rheology, morphology, mechanical properties, and electrical and photothermal properties of the hydrogels were characterized. Furthermore, the good in vitro and in vivo intrinsic antibacterial, photothermal antibacterial, and antibiotics released antibacterial properties of this multiantibacterial hydrogel were verified. The good biocompatibility of these hydrogels was also investigated by cytocompatibility, hemocompatibility, and histocompatibility tests. In the drug-resistant Methicillin-resistant Staphylococcus aureus (MRSA) infected mouse full-thickness defect model, the wound closure rate, the length of dermal tissue gap, number of blood vessels and hair follicles in hematoxylin-eosin (HE) staining, the amount of collagen in Masson staining, and the related cytokines for the expression of inflammation (interleukin-6, IL-6) and regeneration of blood vessels (vascular endothelial growth factor, VEGF) in immunofluorescence were all further studied. All the results demonstrated the better wound healing effect of these multiantibacterial injectable conductive hydrogel in infectious skin tissue defect repair, indicating their great potential for infected wound healing.


Assuntos
Hidrogéis , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Desinfecção , Camundongos , Fator A de Crescimento do Endotélio Vascular , Cicatrização
16.
Exp Ther Med ; 19(6): 3650-3656, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32373193

RESUMO

Stability of space frame structures with bone cement screw reinforcement by biomechanical testing was analyzed. Seven complete human spine specimens with osteoporosis were selected. Three specimens were separated into 18 vertebral bodies. Nine vertebral bodies were randomly selected and bone cement screws were implanted on both sides. Bone cement was used to form a bridge at the front end of the two screws (single vertebral group A). The other nine vertebral bodies were implanted with cement screws on both sides, but the front ends of the two screws were not bridged (single vertebral group B). The remaining spine specimens were used for biomechanical testing of the overall stability of the three-dimensional frame. The four specimens were osteotomized, and then two specimens were randomly selected. Bone cement screws were implanted on both sides of the vertebral body, and a bone cement bridge was formed at the front end of the two screws to establish a three-dimensional frame structure (multi-vertebral group A). The other two spine specimens were implanted with cement screws on both sides of the vertebral body, but the front ends of the two screws were not bridged (multi-vertebral group B). A statistical difference was found between the extractive force of bridged and non-bridged specimens. Group B showed some loosening of screws after the test. The stability of the triangle structure screw, which was formed after the bridge was established at the front end of the single-vertebral bone cement screw, was significantly enhanced. Moreover, the stability was significantly improved after the three-dimensional frame structure was established in the multi-vertebral body group, providing a new method for clinical improvement of the stability and reliability of internal fixation in patients with severe osteoporosis and spinal disease.

17.
Cell Biol Int ; 44(2): 560-568, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31642552

RESUMO

Articular cartilage damage can lead to joint deformity, pain, and severe dysfunction. However, due to the lack of blood vessels and nerves in articular cartilage, the self-healing capacity of damaged cartilage is limited. In this study, we overexpressed small ubiquitin-like modifier (SUMO)1, SUMO2/3, and SUMO1/2/3 in bone marrow mesenchymal stem cells (BMSCs). Then, these cells were inoculated on surfaces of different hardness, and their differentiation into chondrocytes, hypoxic tolerance ability, and inflammatory response was detected. Finally, BMSCs were transplanted into the injured knee joint cavity of the rats, and the repair was evaluated. We found that BMSCs overexpressing SUMO1 were more likely to differentiate into articular cartilage along with the hardness of the surface, while BMSCs overexpressing SUMO2/3 could reduce inflammation response and improve the damaged cartilage microenvironment. In the rat model, BMSCs overexpressing SUMO1/2/3 transplanted on injured articular cartilage surface showed better survival, less inflammatory response, and improved tissue repair capability. In conclusion, BMSCs overexpressing SUMO are more tolerant to hypoxia conditions, and have stronger repair ability for damaged chondrocytes in vitro and for articular cartilage injury model in rats, and are excellent seed cells for repairing articular cartilage.


Assuntos
Cartilagem Articular/citologia , Diferenciação Celular , Condrócitos/citologia , Condrogênese , Células-Tronco Mesenquimais/citologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Engenharia Tecidual/métodos , Animais , Animais Recém-Nascidos , Cartilagem Articular/lesões , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Sprague-Dawley
18.
Int J Biol Macromol ; 140: 255-264, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31421175

RESUMO

Dextran with good biocompatibility and degradability shows great potentials for drug delivery and tissue engineering applications. Electro-responsive drug delivery system can provide on-demand and localized drug release. However, dextran-based conductive hydrogel with electrical stimuli responsiveness as drug delivery system has not been reported. Herein, we designed and fabricated a kind of biocompatible biodegradable conductive hydrogel system with the property of electro-responsiveness as a new smart drug delivery system for localized drug release. These series of hydrogels were synthesized by mixing dextran and electroactive aniline trimer with hexamethylene diisocyanate as crosslinker to form hydrogel network. These series of hydrogels exhibited stable rheological property and controllable swelling ratio. These hydrogels showed good conductivity and desirable electric stimuli ability to control drug release. Furthermore, this kind of hydrogel was controlled by external electrical stimuli to generate a kind of "on-off" precise drug release system. When extra voltage was applied, they released more drug intelligently and less drug molecule without external stimuli. The hydrogel showed good cytocompatibility and in vivo biocompatibility by using H&E staining and Toluidine blue staining. All together, these results indicated that these series of biocompatible conductive dextran-based hydrogels were promising candidates as smart drug delivery systems in future biomedical field.


Assuntos
Compostos de Anilina/síntese química , Materiais Biocompatíveis/síntese química , Dextranos/síntese química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Hidrogéis/síntese química , Compostos de Anilina/uso terapêutico , Materiais Biocompatíveis/uso terapêutico , Dextranos/uso terapêutico , Desenho de Fármacos , Condutividade Elétrica , Estimulação Elétrica , Hidrogéis/uso terapêutico , Engenharia Tecidual
19.
Small ; 15(12): e1900046, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30786150

RESUMO

Developing injectable nanocomposite conductive hydrogel dressings with multifunctions including adhesiveness, antibacterial, and radical scavenging ability and good mechanical property to enhance full-thickness skin wound regeneration is highly desirable in clinical application. Herein, a series of adhesive hemostatic antioxidant conductive photothermal antibacterial hydrogels based on hyaluronic acid-graft-dopamine and reduced graphene oxide (rGO) using a H2 O2 /HPR (horseradish peroxidase) system are prepared for wound dressing. These hydrogels exhibit high swelling, degradability, tunable rheological property, and similar or superior mechanical properties to human skin. The polydopamine endowed antioxidant activity, tissue adhesiveness and hemostatic ability, self-healing ability, conductivity, and NIR irradiation enhanced in vivo antibacterial behavior of the hydrogels are investigated. Moreover, drug release and zone of inhibition tests confirm sustained drug release capacity of the hydrogels. Furthermore, the hydrogel dressings significantly enhance vascularization by upregulating growth factor expression of CD31 and improve the granulation tissue thickness and collagen deposition, all of which promote wound closure and contribute to a better therapeutic effect than the commercial Tegaderm films group in a mouse full-thickness wounds model. In summary, these adhesive hemostatic antioxidative conductive hydrogels with sustained drug release property to promote complete skin regeneration are an excellent wound dressing for full-thickness skin repair.


Assuntos
Antibacterianos/farmacologia , Hemostáticos/farmacologia , Hidrogéis/química , Injeções , Fototerapia , Regeneração/efeitos dos fármacos , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Adesividade , Animais , Antioxidantes/análise , Linhagem Celular , Preparações de Ação Retardada , Dopamina/química , Liberação Controlada de Fármacos , Condutividade Elétrica , Grafite/química , Hemólise/efeitos dos fármacos , Ácido Hialurônico/química , Hipertermia Induzida , Camundongos , Oxirredução , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Reologia , Fator de Necrose Tumoral alfa/metabolismo
20.
J Colloid Interface Sci ; 514: 517-527, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29289734

RESUMO

Conducting polymers and biodegradable polylactide (PLA) scaffolds are both promising biomaterials applied in bone tissue engineering. It is necessary to develop a composite scaffold combining their properties of osteogenic differentiation promotion and three-dimension matrix. To conquer the problem of poor processability of conductive polymers, we use a novel in-situ polymerization/thermal induced phase separation (TIPS) method to fabricate conductive nanofibrous PLA scaffolds with well-distributed polyaniline (PANI) nano-structures. The simple preparation technique provides the possibility to scale-up production of these conductive nanofibrous composite scaffolds. The scaffold structure and content of in-situ formed polyaniline nanoparticles was thoroughly characterized with 1H NMR, FT-IR, XPS, TGA, SEM and UV-vis, and the conductivity/electrochemical properties of the composite scaffolds were controlled with varied feed ratios of aniline to PLA. Meanwhile, the good cytocompatibility of these composite scaffolds was evaluated by culturing bone marrow derived mesenchymal stem cells (BMSCs) on them. The effect of conductive nanofibrous scaffolds on osteogenic differentiation was studied with expression levels of alkaline phosphatase (Alp), osteocalcin (Ocn) and runt-related transcription factor 2 (Runx2) during the culture of BMSCs for three weeks. The calcium mineralization of BMSCs is determined by alizarin red staining. These results indicated that a moderate content of PANI in the conductive nanofibrous scaffolds significantly promoted osteogenic differentiation of BMSCs for engineering bone tissues.


Assuntos
Compostos de Anilina/farmacologia , Medula Óssea/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanofibras/química , Poliésteres/farmacologia , Compostos de Anilina/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condutividade Elétrica , Humanos , Osteoblastos/efeitos dos fármacos , Tamanho da Partícula , Poliésteres/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA